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The problem of shock wave propagation from a piston advancing at constant 
veiocity into a stationary equiponderant gas in which an arbitrary number of 
chemical reactions may take place, is considered. It is assumed that equi- 
librium and the frozen speeds of sound in the gas mixture are close to each 
other. It is shown that in gases with strongly differing reaction rates the shock 
wave region may be conditionally divided into zones in which reactions pro- 

ceed independently. The singular nature of intermediate speeds of sound is 
revealed. 

t Input equrtiala, Asshown in [l. 2 I, the transmission of signals in relaxating 
mixtures is accompanied by dispersion, and in limit cases the transmission rate of 

these is the same as the equilibrium a,, or the frozen afo speeds of sound. It is 
clear that in the case of media considered here the propagation velocity of acoustic 
waves does not greatly differ from these two speeds of sound. 

In the piston problem it is possible to consider the motion of gas as a shortwave 

and define it by the equation [3] 

(1.1) 

i3qi/dr = - I, (hiqi - eg), i zz 1, ..,, A 

Sometimes the analysis is more conveniently carried out using the equation ob- 
tained from (1.1) by eliminating parameters qi [4] 

Let us reiterate the meaning of notation used in (1.1) and (1.2). By denoting 
the dimensional time and space variables by T and R, respectively, we obtain 

the equalities 

where a, is 

librium speeds 

r = (a,T - R) I L, t = a,TA I L 

the moving coordinate system velocity related to the frozen and equi - 
of sound by formulas 

a 0= aoh2yf0 + afo = aOEa2Ye0 + a,, 

The small parameter en2 defines the closeness to the speed of sound, and 

E determines the amplitude of perturbations induced in the quiescent gas by the piston. 
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The perturbed dimensional velocity of gas is EU~U, A is a small parameter associated 

with the assumption that the flow represents a short wave, and L is a characteristic 
length in the direction of the r -axis in the introduced moving system of coordinates. 

The constants 1 > 0, hi > 0, m,,> 0, and ei depend on the physico- 
chemical properties of the considered gas. The variable Qi is proportional to the 
completeness of the i- th chemical reaction. Vector q=(ql, . . . , q.v) defines the 
composition of the gas mixture. In the Gibbs formula each quantity qi as linked to 
the i- th reaction affinity oi which in the approximation considered here is of the 

form 
(1.3) 

When the i- th reaction proceeds in equilibrium 6& = 0. The symbol 

01 (5) denotes the sum of all possible products composed of numbers z,, . . . , 5,~ 
taken in sets of 1 in each product. The quantities 

Yk = Y/o - ; 
mz$+l (_,yn-k 'N-WI (‘) e,yn-k-le 

a.+1( @) 

are of order unity and determine the intermediate speeds of sound irl the gas by formulas 

ak = ao (1 - Ea2Yk), D is a diagonal matrix with elements dii = hi. For 
ais we have the sequence of inequalities 

aio = a!v > . . . > a0 = a,, 

The system of Eqs. (1.1) implies that each quantity 1 i h, may be taken as 
the characteristic length of the k- th chemical reaction. In this paper particular at - 

tention is given to gas mixtures in which chemical reaction rates differ considerably. 
This stipulation is satisfied when conditions 

hi > h, . . . > AN, ei2 i hi - 1 (i = 1, . . . . N) (1.4) 

are satisfied. 
In that case the following approximate equalities are valid: 

N-k 

ak z q. 

C 

1 - f &,2 c ‘$1 

i=l 

(1.5) 

It was shown in [5] that the quantities in the right-hand sides of the last equality ace 
equal to k- multiply frozen and (N - k)- multiply equilibrium speeds of sound 

ufetM) which are calculated by formulas 

where s is the specific entropy of the gas mixture, and P and p are, respect - 
ively , its density and pressure. The subscript zero at a partial derivative indicates that 

it is calculated for a quiescent gas in equilibrium. 

2. The steady traveling wave. Below we shall need some information 

about steady solutions of the system of Eqs. (1.1). 



For this we set in (1.1) and (1.2 ) du / &? = 0 and establish the following boundary 
conditions : 

u = ~0, dv / dr = 0, dqi li dr = 0, r = + o. @.l) 

u = 0, du / dr = 0, qi = 0 dqi / dr = 0, rs- 00 

Integrating the first equation of system (1.1) and allowing for the conditions at infinity, 
in the steady case we obtain 

which at +oo yields the formula 

I?0 = 
2e 2VP0 

n 
EIIL,, (2.2) 

which links the propagation velocity of the steady traveling wave to the stream velocity 
at $00. To determine the asymptotic behavior of solution at --00 we set in sys - 

tern (1.1) in conformity with (2.1) dv / at = 0 and make the quantities v and qi 

and their derivatives tend to zero. Analysis of the derived system of linear equations 

shows that continuous soluticns of this problem exist, if the following inequalities are 

satisfied : 

Ye0 > 0 > Yro (2.3) 

When ~1~ > 0 a compression shock is formed in the flow field ahead of which the 
gas is free of perturbations. A limit solution with a point-characteristic at which the 

perturbed flow is separated from the quiescent background corresponds to condition 

Yro =O. The inequality ye0 > 0, as implied by (2.2), means that the steady 

traveling wave can only be a compression wave. 
Let us derive the conditions at the shock front for discontinuous solution. We 

assume that the front is at point r :z 0. Then, integrating the equations of system 

(1.1) from - 6 to 6 with l)v / dt = 0 and 6 a positive number which is 

made to tend to zero, for the flow parameters at the shock we obtain 

2%2Yf0 v=--, Qi =OV i=l, . . . . N 
em0 

3. The problem of piston for two reactions. A shock wave induced by the 
moving piston propagates in the gas. Certain relationships must be satisfied at the wave 

front. We obtain these using system (1.1) . The main parts of its equations are of di - 

vergent form, hence at the front defined implicitly by the equation cp (r, t) = 0 

the following equalities are satisfied : 
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where fr and f a are values of function f behind and ahead of the shock, re- 
spectively . Since the flow ahead of the shock wave is free of perturbations, we have 

EmOvf 
Sa2Yf0 - 2 = - A+ 

r 
(3.1) 

Qkf=O, k=l, . . . . N 

( Subscript f denotes parameters of flow at the shock front). By known rules of im - 
plicit function differentiation we have 

‘pt drt -- =- 
‘Fr dt 

rp(r,t)=o 

which determines the propagation velocity of the shock front in dimensionless coordin - 
ate.9 . Conditions (3.1) must be supplemented by the equality 

Up = 1 (3.2 1 

which defines the dimensionless velocity of gas at the piston. 
Results of numerical calculations of the problem (1.11, (3.11, (3.2 ) are shown 

by solid lines in Figs. 1 and 2 at various instants of time and ano =0.6 (a), urns 

= 0.3 (b), and &ma = 0.1 (c): Ei and EO are dimensionless space vari - 
ables represented in the system of coordinates attached to the wave in scales L = 1 / h, 
and L = 1 I h, , respectively. It was assumed that N = 2, hI = 100, A = 0.1, 
el = IO, h = 1 7 e2 = 1, 1 = 2, and ea2 = 0.1. Curves 1-8 correspond 

to ti = 10, 20, 40, 80, 100, 140, ZOO, and 600. 
On the.basis of these calculations it is possible to state that in gas mixtures that 

satisfy conditions (1.4) the formation of the wave takes place as follows. It is possible 

to exclude initially from the analysis the second reaction and consider it as completely 
frozen. For fairly long times the solution represents a steady traveling wave for which 
it is necessary to set u. = 1 in conditions (2.1). As the time further increases the 

slow reaction begins to affect the flow field. The shock wave region can now be sep- 

arated into two zones, in one of which the second reaction is completely frozen and 

the flow is determined by the fast reaction, while in the other only the second reaction 

takes place in an unsteady manner. 
Let us consider these results from the point of view of the method of joining 

asymptotic expansions [ 6 1. 
Since the initial gas flow is determined by the fast reaction, we set in Eq. (1.2 1 

L =l IA,. Disregarding in it the lower terms and integrating once, for the de- 

termination of velocity in the shock wave we obtain the equation 

-&[(emou - e2yfo)$- - A$-] +.(errzOu - ea2y1) $ - A% = 0 

Taking into account the limit formula (1.5 ) for the speeds of sound, we can 
ascertain that the obtained equation is equivalent to the system of equations 

18 2 
as1 (em,u - e,2yfo) $- - A $- = + cl ar 

(3.3 1 
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This system together with boundary conditions (3.1 f and (3.2) yields the solution of the 
problem of piston in a relaxing mixture in which only the first reaction proceeds, while 

the second is completely frozen. The first two of conditions (3.1) can be directly ob - 

tained from (3.3 1. For reasonably long times the solution of that problem yields a 
steady wave [7, 8 1, which in accordance with inequality (2.3) and depending on the 
relation between E and 8,’ that wave is either partly or completely dispersed. 

With further increase of time the slow reaction begins to affect the flow field. 
We call the region in which the transition of the first reaction to the equilibrium state 
takes place the relaxation zone of that reaction. The width of that zone in dimension- 
less coordinates related to the new scale 1/A,, [7]is 

a’L 
1% = 1 I i W n ) 2 

! VH 2h, E!IL,j 1 

where VH is related to the wave propagation velocity by equality (2.2 > . 

If I,(( 1, it is possible to introduce in the system of Eqs, {Ll) in new 
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dimensionless variables an intermediate shock wave passing through which the first re- 

action reaches the equilibrium state defined by the condition wI z 0, and the corn - 
position of the second reaction remains unchanged. 

0 4 4 

3 
Fig. 2 

From the condition of the first reaction ~~ibriurn and (1.3) we obtain 441 / 8~ = 

(6, i h,) i3z.J / dr. Su~~~~g the obtained expression for 841 / dr into the first 

equation of system (3.. 1) and taking into account the limit formulas for intermediate 
speeds of sound (1.5 ) I we obtain the @uationo 

From this, similarly to (3.1) I on the introduced intermediate shock 
the conditions 

(3.4) 

wave we have 
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em,,l~H 

&,yJl - 2 = A drrr 
-= VH, q2H =o 

dt 

where the subscript 11 denotes variables at the intermediate shock wave. Note that 
the second of conditions (3.5) - obvious from the definition of the intermediate shock 

wave - is only a formal corollary of system (3.4 1. 

Equations (3.4) together with conditions (3.5) and (3.2) are entirely analogous 
to the problem of piston in a mixture with a single reaction considered above. The in- 
termediate speed of sound a, plays here the part of the frozen speed of sound, which 

is quite natural, considering that in this approximation aI = (6’~ / ~P&,,w. 

As is usual in the method of joining asymptotic expansions ,. we shall call the 

solution of problem (3,4), (3.5) 1 (3.2) external t and the solution in the relaxation 
zone of the first reaction ) the internal solution, which with their related dimensionless 
independent variables will be denoted by subscript 0 and i , respectively. The 
preceding analysis shows that the external solution can be obtained independently of the 
internal which is determined by the condition of its joining with the external solution. 

We introduce the new dimensionless variable 

which is linked with the intermediate shock wave, 
In the new variables (1.2 ) is of the form 

(3.6 1 

The condition of joining external and internal solutions is 

vi (Ei7 Ci) 1.11 (t) when Si - 00 (3.7 1 

Since ~?rr Y ~11 (t,,) , the solution in the inner region is of the form 

Then setting in (3.6 ) L, = 1 ,’ h, and rejecting terms of higher order of smallness, for 
the determination of vi we obtain the equation 

2&-[( ??2oeUi - ecL2yio + En2\11 - E’n”“H avi + 2 - 

21 J 1 “Si 

moeui - 
ei’l”z’i d71, 

- 
2 “E,i 

= 0 

which is entirely analogous to the equation that defines the structure of a steady shock 
wave in a gas with a single chemical reaction but contains the term urr (t,) which 

depends on time to . It is seen from (2.2) that the solution of that equation actually 
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satisfies the condition of joining (3.7 1. In conformity with inequality (2.3 ) S when 
‘is E ??2,VE + a02 X (%o - yI) < 0 (> 0) the internal solution is a wave with 

complete (partial ) dispersion. 
We thus conclude that the flow field separates into two fields. In the external 

field the first reaction is in complete equilibrium and the solution there is determined 
by the slow reaction. In the internal region the flow is quasi-steady: its solution at any 
instant of time is of the same form as the steady solution, but its parameters depend on 
time t,. There the second reaction is frozen, 

If at the limit to -+ co the external solution represents a steady traveling 
wave with partial dispersion and 2~~ at its front satisfies the condition I, < 1 , 

the above analysis is valid for all t, , and the complete solution is a steady traveling 
wave when t, -+ oo , It is seen that the region of stable flow can also be divided 
in two zones in which the reactions proceed independently in the meaning described 
above, 

When VB at the intermediate shock wave becomes so small that the condition 
Es (( 1 is no longer valid, that analysis is inapplicable, since then a region in 

which the interaction of reactions is substantial appears in the flow field. 
Let us derive the equation which determines the gas velocity in that region. It 

follows from (3.5) that in the initial dimensional coordinates that velocity is close to 
al. Hence we set in (1.2) y1 = 0. Since u is small, we neglect in (1.2 ) 

lower terms and obtain 

The pattern of behavior of the mixture parameters in the interaction region can 
only be analyzed by solving the complete problem of piston. However the last equation 
makes it possible to obtain a qualitative idea about the formation of the steady travel- 
ing wave when for considerable 10 the condition 1, < 1 is no longer valid. If the 
propagation velocity in the steady solution for the external region is close to al, the 
effect of me intera~~on region propagating at velocity CQ is substantial and, at least, 
the “tail” of the stabilized steady traveling wave in the complete problem of piston is 
determined by both reactions. But when the propagation velocity in the steady solution 
for the external region is not close to the speed of sound CQ and is below it, the wave 
packets of the external region and that of reaction interplay disperse in space. The 
solution in the reaction interaction region attenuates with time in conformity with an 
exponential law, while in the external region it becomes a steady solution. In a sta - 
bilized steady traveling wave the first reaction is in complete equilibrium. It foltows 
from Sect. 2 that in the stable equation that defines such wave y1 < 0. 

For the sake of comparison asymptotic solutions shown by dash lines are plotted 
in Figs. 1 and 2 besides the numerical solution of the complete problem (1.11, (3.11, 
(3.2). 

4. Shock wave structure in the case of an arbitrary number of chemical reactions. 
The analysis presented here can, by analogy, be applied to gas mixtures with an ar - 
bitrary number N of chemical reaction taking place in it. We shall extend to such 
case the conclusions reached about steady solution of the problem (1.X) I (2.1). 

If Yro > 0, the flow can be separated into N zones. Solution in ihe 
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k- th is determined by the k- th reaction. The first ( k - 1 )-st reactions in 
that zone are in equilibrium, and reactions numbered k + 1, . . . , N are frozen. 
The quantities u and qk are determined here by the equations 

2 (&mav - &,‘Y,v_k+r) $ = &a% (4. I) 

dqk ‘kqk - ekv 

-2F=- 
‘k 

Integration of this system is carried out for initial conditions 

u If+ = 
2ea2yN-k+l 

em, ’ qk Ir=o = 0 
(4.2) 

Recalling the limit formulas for intermediate speeds of sound, from this and 

equality (2.2 ) we obtain 

v= 
2aaayN_k 

r=oo (4.3 ) 
em0 ’ 

It follows from (4.2) and (4.3 ) that the principle of joining is satisfied in the 
derived solution. 

Letin&. (2.1) yfo < 0 , then owing to the monotonicity of intermediate 

speeds of sound noted in Sect. 1, there exists such k > 1 that 

TN-k+1 < 0, yi > 0, i<N-kfl (4.4) 

When all quantities 1 yi 1 - 1 (which, obviously, means that the wave pro- 
pagation velocity is not close to any Intermediate speed of sound), the first k - 1 
reactions may be considered to be in complete equilibrium. The flow region decom - 

poses into N - k + 1 zones. Solution in the first zone is determined by the course 
of the k- th reaction and is defined by Eq. (4.1) but, since in accordance with (4.4) 

yN_k+l < 0, we have here a completely dispersed wave. Hence integration of(4.1) 

necessitates the selection of initial values from the condition that v and qk and 
their derivatives must tend to zero when r -+ - 00. It follows from (4.4) that in the 

remaining zones solutions are determined as in the case of a wave with partial dispersion 
considered above. 

The singular nature of intermediate speeds of sound is revealed when one of the 

quantities 1 YN-k I< 1 * which means that the propagation velocity in the steady 
solution is close to the intermediate speed aN-k. In such wave the first k - 1 

reactions proceed steadily. The flow region may be divided into N - k ZOII~S . In 

the first of these the flow is in the form of a completely dispersed wave, but the re - 
actions numbered k and k + 1 cannot be considered separately there. The flow in 
that region is defined by the equations 

2 (emoV - Ea2y.V_k+l) $ = lea2 
dqk dqk+l 

ek 7 $_ ek+l 7 
> 

dqk -= 
dr 

- L (hkqk - eku), 
dqk+l 
7 = - L (hk+lqk+l - ek+ld 
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The analysis of remaining zones is a repetition of that in the case of a corn - 
pletely dispersed wave. 

All conclusions about steady solutions obtained here by investigating the prob - 

lem of piston can, obviously, be directly derived from the steady equations (1.1) and 

(1.2 ) with boundary conditions (2.3 ) . Such analysis is, however, outside the scope 
of this paper. 

The author thanks 0. S. Ryzhov for advice which was decisive for the whole of 

this work. 
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